Course Catalog

3 Credit hours. All engineering structures and devices utilize materials which have been selected based on their properties. These properties along with design considerations enable a desired performance level. Therefore, engineers of every type are well served in their careers by an understanding of the scientific foundations of materials that govern these properties. Accordingly: This course is designed to provide an introduction to engineering materials with an emphasis on how atomic and molecular bonding, structure, composition and processing influence material properties.

Instructor

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Dr. Yousef Mubarak</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail</td>
<td>ymubarak@ju.edu.jo</td>
</tr>
<tr>
<td>Office</td>
<td>CHE 3rd Floor Office 315</td>
</tr>
<tr>
<td>Tel</td>
<td>22891</td>
</tr>
</tbody>
</table>

Prerequisites

<table>
<thead>
<tr>
<th>Prerequisites by topic</th>
<th>Principles II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites by course</td>
<td>0905212</td>
</tr>
</tbody>
</table>

Textbook

<table>
<thead>
<tr>
<th>Title</th>
<th>Materials Science and Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>William D. Callister</td>
</tr>
<tr>
<td>Publisher</td>
<td>John Wiley & Sons</td>
</tr>
<tr>
<td>Year</td>
<td>2010</td>
</tr>
<tr>
<td>Edition</td>
<td>8th Edition</td>
</tr>
</tbody>
</table>

References

Objectives and Outcomes

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) To provide an understanding of the influence of bonding, nano- and microstructure, composition and processing on the properties of materials. [a, h]</td>
<td>Upon successful completion of the Introduction to Engineering Materials Science course, students should be able to:</td>
</tr>
<tr>
<td>2) To provide students with an understanding of various types of materials, their ranges of properties, and how their properties can be tailored for engineering purposes. [a, h]</td>
<td>1. Distinguish the different classes of engineering materials. [a, e]</td>
</tr>
<tr>
<td>3) To provide the students with an understanding of the various advantages and disadvantages offered by specific classes of materials, and an awareness of the possible tradeoffs associated with optimization of a specific material's properties. [a, c, e]</td>
<td>2. Describe and comment on structure, processing and properties of the main classes of materials and the relationships between them. [a, h]</td>
</tr>
<tr>
<td>4) To provide students with an understanding of various types of materials, their ranges of properties, and how their properties can be tailored for engineering purposes. [a, h]</td>
<td>3. Describe the structure and properties of a range of advanced materials. [a]</td>
</tr>
<tr>
<td>5) To provide students with an understanding of the various advantages and disadvantages offered by specific classes of materials, and an awareness of the possible tradeoffs associated with optimization of a specific material's properties. [a, c, e]</td>
<td>4. Describe processing-microstructure-property relationships. [a, c, e]</td>
</tr>
<tr>
<td>6) To provide students with an understanding of various types of materials, their ranges of properties, and how their properties can be tailored for engineering purposes. [a, h]</td>
<td>5. Support their understanding of the above areas with quantitative analyses where appropriate. [a]</td>
</tr>
<tr>
<td>7) To provide students with an understanding of various types of materials, their ranges of properties, and how their properties can be tailored for engineering purposes. [a, h]</td>
<td>6. Demonstrate an awareness of the principles underpinning engineering design. [c, e]</td>
</tr>
</tbody>
</table>

Course Assessment: The assessment of objectives will be achieved through homework assignments, quizzes, and common examinations with common grading.

Evaluation

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Expected Due Date</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework & Quizzes</td>
<td>One week after homework problems are assigned and there will be a quiz every week.</td>
<td>10 %</td>
</tr>
<tr>
<td>First Exam</td>
<td>Thursday 16/3/2017</td>
<td>20 %</td>
</tr>
<tr>
<td>Second Exam</td>
<td>Thursday 13/4/2017</td>
<td>20 %</td>
</tr>
<tr>
<td>Final Exam</td>
<td>According to the University final examination schedule</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Topics Covered

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Chapters in Text</th>
</tr>
</thead>
</table>
| 1 | Introduction
 - Historical Perspective
 - Materials Science and Engineering
 - Why Study Materials Science and Engineering
 - Classification of Materials
 - Advanced Materials
 - Modern Materials Needs | Chapter 1 |
| 2-3 | Atomic Structure and Interatomic Bonding
 - Introduction
 - Atomic Structure
 - Fundamental Concepts
 - Electrons in Atoms
 - The Periodic Table
 - Atomic Bonding in Solids
 - Bonding Forces and Energies
 - Primary Interatomic Bonds
 - Secondary Bonding or van der Waals Bonding
 - Molecules | Chapter 2 |
| 4-6 | The Structure of Crystalline Solids
 - Introduction
 - Crystal Structure
 - Fundamental Concepts
 - Unit Cells
 - Metallic Crystal Structures | Chapter 3 |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topic</th>
<th>Subtopics</th>
</tr>
</thead>
</table>
| 7 | Imperfections in Solids | o Introduction
| | | o Point Defects
| | | o Vacancies and Self-Interstitals
| | | o Impurities in Solids
| | | o Discrepancy Imperfections
| | | o Dislocations—Linear Defects
| | | o Interfacial Defects
| | | o Bulk or Volume Defects
| | | o Atomic Vibrations
| | | o Microscopic Examination
| | | o General
| | | o Microscopy
| | | o Grain Size Determination
| 8-9 | Mechanical Properties of Metals | o Introduction
| | | o Concepts of Stress and Strain
| | | o Elastic Deformation
| | | o Stress—Strain Behavior
| | | o Anelasticity
| | | o Elastic Properties of Materials
| | | o Plastic Deformation
| | | o Tensile Properties
| | | o True Stress and Strain
| | | o Elastic Recovery During Plastic Deformation
| | | o Compressive, Shear, and Torsional Deformation
| | | o Hardness
| | | o Property Variability and Design Safety Factors
| | | o Variability of Material Properties
| | | o Design/Safety Factors
| 10 | Failure | o Introduction
| | | o Fracture
| | | o Fundamentals of Fracture
| | | o Ductile Fracture
| | | o Brittle Fracture
| | | o Principles of Fracture Mechanics
| | | o Impact Fracture Testing
| | | o Fatigue
| | | o Cyclic Stresses
| | | o The S—N Curve
| | | o Crack Initiation and Propagation
| | | o Crack Propagation Rate
| | | o Factors That Affect Fatigue Life
| | | o Environmental Effects
| | | o Creep
| | | o Generalized Creep Behavior
| | | o Stress and Temperature Effects

Submission: Chapter4, Chapter6, Chapter8
<table>
<thead>
<tr>
<th>Pages</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 11-12 | **Phase Diagrams**
| | - Introduction
| | - Definitions and Basic Concepts
| | - Solubility Limit
| | - Phases
| | - Microstructure
| | - Phase Equilibria
| | - One-Component Phase Diagram
| | - Binary Phase Diagrams
| | - Binary Isomorphous Systems
| | - Binary Eutectic Systems
| | - Equilibrium Diagrams Having Intermediate Phases or Compounds
| | - Eutectoid and Peritectic Reactions
| | - Congruent Phase Transformations
| | - Ceramic and Ternary Phase Diagrams
| | - The Gibbs Phase Rule
| | - The Iron-Carbon System
| | - The Iron—Iron Carbide (Fe—Fe3C) Phase Diagram
| | - Development of Microstructures in Iron—Carbon Alloys
| | - The Influence of Other Alloying Elements
| 13 | **Phase Transformations in Metals:**
| | - Introduction
| | - Phase Transformation
| | - Basic Concepts
| | - The Kinetics of Solid-State Reactions
| | - Multiphase Transformations
| | - Microstructural and Property Changes in Iron-Carbon Alloys
| | - Isothermal Transformation Diagrams
| | - Continuous Cooling Transformation Diagrams
| | - Mechanical Behavior of Iron—Carbon Alloys
| | - Tempered Martensite
| | - Review of Phase Transformations for Iron—Carbon Alloys
| 14 | **Thermal Processing of Metal Alloys**
| | - Introduction
| | - Process Annealing
| | - Stress Relief
| | - Annealing of Ferrous Alloys
| | - Hardenability
| | - Influence of Quenching Medium, Specimen Size, and Geometry
| | - Heat Treatments
| | - Mechanism of Hardening
| | - Miscellaneous Considerations
| 15 | **Structures and Properties of Ceramics**
| | - Introduction
| | - Ceramic Structure
| | - Crystal Structures
| | - Silicate Ceramics
| | - Carbon
| | - Imperfections in Ceramics
| | - Ceramic Phase Diagrams
| | - Mechanical Properties
| | - Brittle Fracture of Ceramics
| | - Stress-Strain Behavior
| | - Types and Applications of Ceramics
| | - Glasses
| | - Glass-Ceramics
| | - Clay Products
| | - Refractories
| | - Abrasives

Chapter 9
Chapter 10
Chapter 11
Chapter 12
Relationship to Program Outcomes (%)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Relationship to Chemical Engineering Program Objectives

<table>
<thead>
<tr>
<th></th>
<th>PEO1</th>
<th>PEO2</th>
<th>PEO3</th>
<th>PEO4</th>
<th>PEO5</th>
<th>PEO6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Document control

<table>
<thead>
<tr>
<th>Prepared by</th>
<th>Dr. Yousef Mubarak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Modified</td>
<td>January 23, 2017</td>
</tr>
</tbody>
</table>