Structural Analysis of Discrete Data
with Econometric Applications

edited by
Charles F. Manski
and Daniel McFadden

The MIT Press
Cambridge, Massachusetts
London, England
Contents

List of Contributors xiii
Preface xv
Editors’ Introduction xvii

I Statistical Analysis of Discrete Probability Models

1 Alternative Estimators and Sample Designs for Discrete Choice Analysis
Charles F. Manski and Daniel McFadden

1.1 Introduction 2
1.2 The Likelihood of an Observation under Alternative Stratified Sampling Processes 8
1.3 Estimation of the Choice Model Parameters 11
1.4 Estimation with p and Q Both Known 13
1.5 Estimation with p Known and Q Unknown 16
1.6 Estimation with p Unknown and Q Known 17
1.7 Estimation with p and Q Both Unknown 24
1.8 Estimation in a General Stratified Sample 28
1.9 Selection of a Sample Design and Estimation Method 31
1.10 Conclusion 34
1.11 Appendix: Consistency of the Estimators 36
1.12 Appendix: Asymptotic Normality 45
References 49

2 Efficient Estimation of Discrete-Choice Models
Stephen R. Colesett

2.1 Introduction 51
2.2 Discrete Choice Models 52
2.3 Stratified Sampling and Choice-Based Sampling 54
2.4 Generalized Choice-Based Sample 57
2.5 Sample with Known Aggregate Shares 59
2.6 Aggregate Shares Estimated from an Auxiliary Sample 60
2.7 Supplemented Sample 60
2.8 General Considerations in Maximum Likelihood Estimation 61
2.9 Notation for a General Choice-Based Sample 63
2.10 The Likelihood Function for Choice-Based Samples 64
Contents

3.10 A Model with Habit Persistence 145
3.11 Computation in the General Model 147
3.12 A Summary of Sections 3.2 through 3.11 148
3.13 Heterogeneity versus Structural State Dependence: An Application of the Preceding Models 150
3.14 Testing for Heterogeneity versus State Dependence 154
3.15 Analogies with Time-Series Models 161
3.16 Examples of Models that Generate Structural State Dependence 163
3.17 Summary and Conclusion 166
3.18 Appendix: Factor Analytic Probit Models 167
References 175

4 The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a Discrete Time-Discrete Data Stochastic Process
James J. Heckman

4.1 Introduction 179
4.2 The Problem of Initial Conditions and Some Formal Solutions 181
4.3 Simpler Solutions and the Problem of Incidental Parameters 185
4.4 Some Monte Carlo Evidence 189
4.5 Conclusions 194
References 195

III Structural Discrete Probability Models Derived from Theories of Choice

5 Econometric Models of Probabilistic Choice
Daniel McFadden

5.1 Economic Man 198
5.2 Discrete Choice 199
5.3 Probabilistic Consumer Theory 201
5.4 Probabilistic Choice Systems 201
5.5 The Random Utility Maximization Hypothesis 202
5.6 Stochastic Revealed Preference 204
5.7 Aggregation of Preferences 206
5.8 The Williams-Daly-Zachary Theorem 210
5.9 Criteria for Parametric Probabilistic Choice Systems 217
5.10 Specification of Variables 217
5.11 Functional Form 218
5.12 The Luce Model 221
5.13 Thurstone's Model V 223
5.14 Tversky Elimination Models 225
5.15 Generalized Extreme Value Models 226
5.16 Preference Trees 230
5.17 Estimation of Tree Extreme Value Models 238
5.18 Sequential Estimation 241
5.19 An Application 242
5.20 Appendix: Normalization in MNL and MNP Models 249
5.21 Appendix: Computational Formulas for a Simple Model 250
5.22 Appendix: Computational Formulas for the Nested Multinomial Logit Model 252
5.23 Appendix: Proof of Theorem 5.1 260
5.24 Appendix: The Elimination-by-Strategy Model 268
References 269

6 Random versus Fixed Coefficient Quantal Choice Models 273
Gregory W. Fischer and Daniel Nagin

6.1 Introduction 273
6.2 Quantal Choice Theory and Variation in Tastes 273
6.3 An Empirical Comparison of the LPIID and RCCD Models 280
6.4 Details of the Experiment 280
6.5 Results 281
6.6 Analysis of Individual Respondents 282
6.7 A Comparison of LPIID Probit and RCCD Probit Estimation 287
6.8 Conclusions 297
6.9 Appendix: The Unestimable Models 299
6.10 Appendix: Mean Taste Estimates in the LPIID and RCCD Models 302
References 304
Contents

7 On the Use of Simulated Frequencies to Approximate Choice Probabilities
Steven R. Lerman and Charles F. Manski

7.1 Introduction 305
7.2 The Simulated Frequency Method 306
7.3 Bayesian Approach 307
7.4 Estimation of a Function of a Collection of Probabilities 307
7.5 Application to the Calculation of Multinomial Probit Choice Probabilities 309
7.6 The Simulation Routine 311
7.7 The Clark Method 312
7.8 Numerical Test Objectives and Design 313
7.9 Test Results and Analysis 315
7.10 Conclusions 318
References 319

8 Application of a Continuous Spatial Choice Logit Model
Moshe Ben-Akiva and Thawat Watanatada

8.1 Introduction 320
8.2 Basic Definitions 321
8.3 Spatial Aggregation 322
8.4 The Discrete Logit Model 322
8.5 Spatial Aggregation Using Continuous Functions 325
8.6 The Continuous Logit Model 327
8.7 A Parametric Example of Spatial Aggregation 329
8.8 Continuous Logit with Featureless Plane 332
8.9 Basic Operations of the MIT-TRANS Model 336
References 342

IV Simultaneous Equations Models with Discrete Endogenous Variables

9 Simultaneous Equations Models with Discrete and Censored Variables
Lung-Fei Lee

9.1 Introduction 346
9.2 Two-Stage Methods and Amemiya’s Principle 347
9.3 Structural Equations with Probit Structure 349
9.4 Structural Equations with Observable Continuous 351
Endogenous Variables
9.5 Structural Equations with Censored Dependent Variables 352
9.6 Structural Equations with Tobit Structure 355
9.7 Switching and Censored Models with Sample Separation 358
Information
9.8 Conclusion 362
References 363

10 Stratification on Endogenous Variables and Estimation: The 365
Gary Income Maintenance Experiment
Jerry A. Hausman and David A. Wise

10.1 Introduction 367
10.2 The Problem of Endogenous Sampling and Estimation 374
Methods
10.3 Relative Efficiencies of Weighted Least Squares versus 379
Maximum Likelihood Estimates
10.4 Empirical Results of the Selection Bias in the Gary 383
Income Maintenance Experiment
10.5 Alternative Sampling Procedures 387
10.6 Conclusion 388
10.7 Appendix: Extension of the Analysis to Two Time 389
Periods and Two Equations
References

11 A Switching Simultaneous Equations Model of Physician 392
Behavior in Ontario
Dale J. Poirier

11.1 Introduction 393
11.2 Econometric Model 397
11.3 Estimation 402
11.4 Estimation of the Switching (Option) Equation 404
11.5 Empirical Results 406
11.6 Estimated Option Equation 411
11.7 Estimated Referral Equation
11.8 Concluding Remarks 420
References 421

12 Constraints on the Parameters in Simultaneous Tobit and Probit Models
Peter Schmidt

12.1 Introduction 422
12.2 Simultaneous Tobit Models 422
12.3 All Endogenous Variables Truncated 423
12.4 Some Endogenous Variables Truncated 424
12.5 Both Y and Y* as Explanatory Variables 426
12.6 Simultaneous Probit Models 426
12.7 All Endogenous Variables Truncated 427
12.8 Some Endogenous Variables Truncated 430
12.9 Both Y and Y* as Explanatory Variables 431
12.10 Conclusions 433
References 434

13 Estimating Credit Constraints by Switching Regressions
Robert B. Avery

13.1 Introduction 435
13.2 The Supply of Debt 437
13.3 The Model and Data 439
13.4 Simultaneous Switching Regression and Linear Equations 446
13.5 The Evidence 453
13.6 Qualifications and Evaluations 461
13.7 Appendix: Proof of Theorem 13.1 462
13.8 Appendix: Empirical Reduced Form Equations 464
References 471

Index 473
List of Contributors

Robert B. Avery
Carnegie-Mellon University
Pittsburgh, Pa.

Moshe Ben-Akiva
Massachusetts Institute of Technology
Cambridge, Mass.

Stephen R. Coslett
Northwestern University
Evanston, Ill.

Gregory W. Fischer
Carnegie-Mellon University
Pittsburgh, Pa.

Jerry A. Hausman
Massachusetts Institute of Technology
Cambridge, Mass.

James J. Heckman
University of Chicago
Chicago, Ill.

Lung-Fei Lee
University of Minnesota
Minneapolis, Minn.

Steven R. Lerman
Massachusetts Institute of Technology
Cambridge, Mass.

Charles F. Manski
Hebrew University
Jerusalem, Israel

Daniel McFadden
Massachusetts Institute of Technology
Cambridge, Mass.

Daniel Nagin
Carnegie-Mellon University
Pittsburgh, Pa.

Dale J. Poirier
University of Toronto
Toronto, Canada

Peter Schmidt
Michigan State University
East Lansing, Mich.

Thawat Watanatada
International Bank for Reconstruction and Development
Washington, D.C.

David A. Wise
Harvard University
Cambridge, Mass.
Preface

The chapters in this volume are all original and previously unpublished major research contributions made by econometricians to the structural analysis of discrete data. Two factors led to our decision to organize this volume.

First, we feel that the piecemeal publication in the journals of new research in this field has made it difficult for econometricians not actively working on discrete data problems to overview the existing state of knowledge and the present frontiers of research. Coordinated publication of the basic findings in this new subject should lower the cost of entry into the field and speed dissemination of recent research into the graduate econometrics classroom.

Second, as the econometric literature on discrete data analysis has grown, and its contributions have matured, we have increasingly wished to communicate the concerns and results of this literature to the wider community of researchers involved in the structural analysis of discrete data, both in applied economics and in disciplines outside economics. As the editors' introduction to this volume emphasizes, there exist important interconnections between the econometric literature on discrete data and the work in statistics, biometrics, psychometrics, sociometrics, and other disciplines on discrete data analysis. We have tried to organize this volume so that readers from outside economics as well as applied economists will recognize the connections between the problems they face and the issues addressed in econometric analysis of discrete data and will find the results obtained here useful in their work.

Submissions of papers for possible publication in the volume were solicited by the editors in the spring of 1978. We are grateful to R. Avery, M. Ben-Akiva, S. Cosslett, G. Duncan, D. Gillen, J. Hausman, J. Heckman, L. Lee, S. Lerman, D. Nagin, D. Poirier, P. Schmidt, B. Singer, R. Westin, and D. Wise, each of whom reviewed one or more papers.

The editors and many of the contributors in this volume have benefited greatly from exchanges of results at a series of workshops on the econometric analysis of discrete data sponsored by the National Science Foundation. The editors wish to thank Carnegie-Mellon University, the University of California, Berkeley, and the University of Chicago for providing facilities for these workshops.